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The growth of active wireless
systems often increases radio
frequency interference (RFl)

experience by passive sensors

This needs research on

active

and passive spectrum

coexistence

Task 1 (PHY-APP Layer)

1.1 Al-Enabled RFI
detection and mitigation

1.2 Sparsity-based RFI
detection and mitigation

utilizing existing datasets
from SMAP and UWBRAD

by wireless channel
virtualization

2.2 Deep Reinforcement

learning for channel
mapping
2.3 Al-based Active

transmission optimization
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» Radio astronomy (RA), remote sensing
(RS) and other passive sensing services

LARGE: Al-Enabled Spectrum Coexistence between

are indispensable in modern society

> Active wireless technologies such as

loT, UAVs and 5G wireless networks
are driving advances in key sectors
such as healthcare, manufacturing,
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2.1 Sparse radio frames
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3.1 Ground and aerial
system prototyping

3.2 Deployment of and
installation of drone-
based L-band radiometer

3.3 System emulator

Testbed Preparation

In Band: 5G waveforms were intentionally
propagated within the operational bandwidth

of the radiometer (1400-1427 MHz).
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» Currently there is no publicly available
dataset for active-passive co-existence

research

> We have developed an open dataset
and accompanying processing scripts
for both transmitted 5G samples and
radiometer measurements
> SDR-based digital processing unit
enables acquisition of raw 1Q
samples at the radiometer
> A customizable 5G NR system
enables transmitting various
wireless communication signals

Experimental Scenario

Independent Variables in Experiment Campaign:

* Modulation Technigques

* Transmission Bands * Resource Block
* Power Gains
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Dataset file structure for both transmitted 5G samples
and radiometer received data

Filename Data level
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Transition Band: The
center frequency of
transmitted signals are
shifted with 10 MHz step
size spanning from 1423.5
MHz to 1453.5 MHz.

Out-Of-Band: Transmitted
signals are outside the
operating bandwidth of the
radiometer.

Fully Calibrated (Tg) High-
Resolution Spectrogram
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Dataset and
Processing
Scripts
Available
[GitHub Link]
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INFORMATION PROCESSING
AND SENSING

Aggregate RFI Analysis using Stochastic Geometry

Goal: Model aggregate RFI induced on a
space-borne passive Remote Sensing (RS)
satellite from a large-scale terrestrial NextG
network

Use a Poisson Cluster Process to model
the distribution of cellular User Equipment
(UEs)

» Each cluster represents a dense urban
area

Use shadowed Rician fading (SRF) to model
the Earth-space channel

Derive the characteristic function of
aggregate RFI and its statistical properties

» Cumulants, average, variance, skewness,
and kurtosis.

Analyze the Sensing Outage Probability (SOP)
at the RS satellite: SOP(t) = P(|T — E[T]| > 1)

» T denotes the RFI brightness temperature
and E|T] denotes its expected value

» E|T] is used to correct the RS satellite’s
RFI contaminated measurements

> 1 =1.3 Kelvin for NASA’s SMAP mission

Channel

A. = 1 cluster (dense urban area) every

500,000 km?4. 50 clusters on Earth

exposed to the satellite on average.

> Ayg €[0,2000] UEs per cluster. Up to
100,000 UEs are exposed to SMAP on

average.

> g = —15 dBi (extremely low side-lobe
gain of SMAP’s antenna)

Interfering UE located at point U
hitting SMAP’s side-lobe of gain g4
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Dense NN
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Adaptation

Task Buffer
Pilot 1

CAE designs an optimized modulation
scheme for a particular fading
channel.

The same solution can not be applied
for all channels.

CAEs have to be retrained for a new
channel realization.

Retraining requires computation
resources and time.
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Dataset Model

Automatic modulation classification (AMC)
models are vulnerable to adversarial attacks.
Interference can exploit adversarial attacks
(FGSM, PGD, CW, MIM) to fool the model.
Adversarial perturbations are small input
changes that greatly reduce accuracy.
Adversarial training improves robustness but
cannot cover infinite perturbations.

In practice, AMC must handle unknown
adversarial perturbations.

A. M. Alam, M. M. Farhad, W. Al-Qwider, A. Owfi, M. Koosha, N. Mastronarde, F. Afghah, V. Marojevic, M. Kurum, A. C. Gurbuz, "A Physical Testbed and Open Dataset for Passive Sensing and Wireless Communication Spectrum Co-Existence," in IEEE Access.

[Submitted]

List of Publications

Solution: Online meta-learning CAE
> Transmit a few pilot samples per fading
channel realization.
> Use these samples as support and query

sets for meta

» OML-CAE leverages accumulated tasks in

-learning.

a buffer for meta-training with MAML.
» MAML updates CAE initialization, then

fine-tunes on current support set to

obtain optimized weights.

Dataset Generation

Substitute
Model 1
Substitute
Model n

Adversarial Attack
Method 1

Clean
Singal
Dataset

¥
(o ——>
+) |
-~

Adversarial Attack
Method m

> Automatic modulation classification (AMC) models
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Meta Training
Tasks

Adversarial
Training Task 1

Adversarial
Training Task
n*m

are vulnerable to adversarial attacks.

> Interference can exploit adversarial attacks (FGSM,

PGD, CW, MIM) to fool the model.

> Adversarial perturbations are small input changes

that greatly reduce accuracy.
> Adversarial training improves robustness but
cannot cover infinite perturbations.

> In practice, AMC must handle unknown adversarial

perturbations.
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